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Abstract

The quadrature method of moments (QMOM), a promising new tool for aerosol dynamics simulation,
is extended to multicomponent, internally mixed particle populations. A new moment closure method, the
Jacobian matrix transformation (JMT), is introduced and shown to provide an e5cient procedure for evolving
quadrature abscissas and weights directly and in closed form. For special growth laws where analytic results
are available for comparison, the QMOM is also found to be exact. The JMT implementation of the QMOM is
used to explore the asymptotic behavior of coagulating aerosols at long time. Nondimensional reduced moments
are constructed, and found to evolve to constant values in excellent agreement with estimates derived from
‘self-preserving’ distributions previously obtained by independent methods. Our ;ndings support the QMOM as
a new tool for rapid, accurate simulation of the dynamics of an evolving internally mixed aerosol population,
including the approach to asymptotic behavior at long time, in terms of lower-order moments.
Published by Elsevier Science Ltd.
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1. Introduction

The accurate and e5cient representation of aerosol microphysical processes is a growing require-
ment in such diverse modeling applications as combustion, nano-particle synthesis, and assessment
of radiative and chemical e>ects of natural and anthropogenic atmospheric aerosols and their impact
on climate. Most aerosol models explicitly represent the particle size distribution using either discrete
bins (the sectional approach) or assumed functional forms for various modes of the distribution (the
modal approach). These are standard modeling schemes well investigated in the literature. More
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recently, there have been advances in representing aerosols by the moments of the size distribution
rather than the distribution itself. This approach, the method of moments (MOM), o>ers signi;cant
advantages for incorporating aerosol processes in large-scale models, provided closed sets of dynami-
cal equations for evolution of the moments can be obtained (Friedlander, 1983; McGraw & Saunders,
1984; Pratsinis, 1988; McGraw, 1997). These include comparatively straightforward implementation
of the method as the moments evolve according to (closed) sets of di>erential equations having the
structure of typical rate equations governing the evolution of reacting chemical species in the same
background Jow. Additionally, simulations of aerosol dynamics based on moments are free from
uncertainties associated with numerical di>usion (in particle size space) and tend to have greatly
superior computational speed when compared with the section approach (Frenklach & Harris, 1987).

Closure of the moment evolution equations has always been the key issue. The conditions neces-
sary for exact closure are encountered only in highly specialized cases such as free-molecular growth
(Hulburt & Katz, 1964). However with the recent introduction of the quadrature method of moments
(QMOM) (McGraw, 1997; Barrett & Webb, 1998), condensation and coagulation kernels of arbi-
trary form can be treated without the need for a priori assumptions about the size distribution. Thus
the QMOM has become a viable candidate for modeling aerosols under very general conditions. The
;rst paper (McGraw, 1997) introduced the quadrature-based closure technique and its application
to arbitrary rate laws for evaporation and condensation growth. In essence, the QMOM replaces
exact closure with an approximate, but much less restrictive closure condition, while enabling eval-
uation of physical and optical properties as integrals over a particle distribution function when only
the lower-order moments of the distribution are known. The method has been applied to coagula-
tion and condensation (Barrett & Webb, 1998) and more recently—with nucleation, condensation,
and coagulation all included within the QMOM framework—to the representation of aerosols in a
sub-hemispheric scale atmospheric chemical transport and transformation model (Wright, McGraw,
Benkovitz, & Schwartz, 2000).

The present paper continues development of the QMOM through its extension to internally mixed
multicomponent aerosols undergoing growth by condensation and coagulation. This complements
our previous treatment of external mixtures by the QMOM in which four di>erent types of aerosol
were simultaneously present (Wright et al., 2000). A rigorous treatment of generally mixed aerosol
populations requires a multivariate description (see Section 6) and is reserved for a future report.

2. Derivation of the coupled moment equations for an internal mixture

Consider a general aerosol coordinate x, which can represent particle radius, mass, log radius,
etc. The growth law, de;ned in terms of x, is �(x) ≡ dx=dt, which, in general, will depend on
condensable vapor species concentrations and temperature, as well as on x. (With closure under
arbitrary growth laws enabled by the QMOM, comes the freedom to select the aerosol coordinate that
is best for the problem at hand. As explained further in the following section this is a very positive
feature of the quadrature closure method.) Changes in the aerosol number density distribution function
f(x) under condensation and evaporation, which conserve particle number, follow the conservation
equation:

@f(x)
@t

=−@(�f)
@x

: (2.1)
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Units of f(x) particles per unit volume between x and x + dx. The kth moment in x-space is
de;ned as

〈xk〉f ≡
∫ ∞

0
xkf(x) dx; (2.2)

where 〈 〉f indicates averaging over the distribution f. Its time evolution is

d
dt

〈xk〉f =−
∫ ∞

0
xk

@(�f)
@x

dx = k
∫ ∞

0
xk−1�(x)f(x) dx (2.3)

for k¿ 1. The ;rst equality follows from Eqs. (2.1) and (2.2). The last equality follows integration
by parts and the fact that f(x) vanishes at the limits of integration. The appearance of the total
derivative reJects the fact that the integral over size space is a function only of time. For x equal to
the particle radius, Eq. (2.3) was derived previously by a similar method (Hulburt & Katz, 1964) and
utilized in development of the QMOM for condensation growth (McGraw, 1997). See Appendix A
for a more general result.

2.1. Total mass and component species mass distributions

For the remainder of this section let the aerosol coordinate be the total particle mass (x=m) and
consider the aerosol total mass distribution q = mf. Units of q(m) are total aerosol mass per unit
volume for those particles having mass between m and m+dm. Following Pilinis (1990) and Meng,
Dabdub, and Seinfeld (1998) we de;ne the mass distribution function of species j in the particulate
phase:

qj(m; t) =
mj

m
q(m; t); (2.4)

where mj(m) is the mass of species in an internally mixed particle of total mass m.
To obtain evolution equations for the moments of q(m) and qj(m), we need the analogous equations

to Eq. (2.1) for these distributions. An elegant procedure, based on the method of characteristics
and transformation to the moving reference frame de;ned by the characteristic curves dm=dt=�(m),
where �(m) is the growth law, has been developed by Pilinis (1990) that solves this problem. Here
we give only the ;nal result, referring the reader to Pilinis (1990) and Meng et al. (1998) for
additional details of the derivation. For the total mass distribution the analog to Eq. (2.1) is

@q
@t

=−m
@(q�=m)

@m
=−m

@(qH)
@m

; (2.5)

where the last equality introduces the relative growth law H (m) = m−1 dm=dt. For the mass distri-
bution of species j the analogous equation is

@
@t

qj =−@(qjmH)
@m

+
q
m

dmj

dt
=−@(qjmH)

@m
+ qHj(m); (2.6)

where the second equality with Hj(m) ≡ m−1 dmj=dt de;nes the growth law for the relative rate of
growth of component mj in a particle of total mass m. Eq. (2.6) is the condensation part of the
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aerosol general dynamic equation describing evolution of the mass distribution of species j in an
internal mixture (Meng et al., 1998).

2.2. Evolution of the moments

The mass moments over q are

〈mk〉q ≡
∫ ∞

0
mkq(m) dm: (2.7)

From this result and q= mf we have the identity:

〈mk〉q = 〈mk+1〉f: (2.8)

Thus the zeroth moment over the q distribution gives the total aerosol mass density. From Eqs. (2.5)
and (2.7) and after an integration by parts we obtain

d
dt
〈mk〉q = (k + 1)

∫ ∞

0
mkH (m)q(m) dm (2.9)

for k¿ 0. We de;ne the mass moments over qj as

〈mk〉qj ≡
∫ ∞

0
mkqj(m) dm: (2.10)

Di>erentiation of Eq. (2.10), using Eq. (2.6) and integrating the ;rst term by parts, gives

d
dt
〈mk〉qj = k

∫ ∞

0
mkqj(m)H (m) dm+

∫ ∞

0
mkq(m)Hj(m) dm (2.11)

for k¿ 0. (See Appendix A for an alternate derivation of this result.) Eq. (2.11) (including one
set of moments for each aerosol component j) are the fundamental coupled moment equations of
the condensation model. Eq. (2.9) for evolution of the aerosol total mass distribution moments is
recovered from Eq. (2.11) by summing over all aerosol components j (using q=

∑
qj and H=

∑
Hj).

Species mass distributions are seen from Eq. (2.11) to be coupled with each other through the total
mass distribution. Eq. (2.11) cannot be solved in their present form because of the integrations over
the unknown distribution functions q(m) and qj(m). Except for very special cases of the growth law,
closure of these equations is not possible. Speci;cally, closure of Eq. (2.11) by the conventional
MOM (for example, Hulburt & Katz, 1964) would require that each of the growth laws, H (m) and
Hj(m), be in the form a+b=m where a and b are constants. Analytic solutions for q(m; t), considered
by Pilinis (1990) for the growth law H (m) = a, are brieJy discussed in Section 5. In the following
section, we outline the closure of Eq. (2.11) by the QMOM and introduce a new computational
approach (the Jacobian matrix transformation (JMT)) for their solution.

3. Closure by the quadrature method of moments (QMOM)

A general procedure for closure of moment evolution equations is given by the QMOM (McGraw,
1997). Indeed all dynamical processes that involve integrations over the unknown aerosol distribution
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can be handled by this approach. Speci;cally, the QMOM provides a recipe for closure under
coagulation (Barrett & Webb, 1998) as well as for condensation/evaporation growth.

The essence of quadrature-based closure of Eqs. (2.9) or (2.11) lies in approximating the growth
law integrals by n-point Gaussian quadratures with the nonstandard weight function q or qj. Appli-
cation of quadrature to Eq. (2.9) gives

d
dt
〈mk〉q ∼= (k + 1)

n∑
i=1

mk
i H (mi)wi (3.1a)

for k¿ 0. The approximate equality in Eq. (3.1a) refers to use of the quadrature approximation.
The right-hand side derives from Eq. (2.9) by treating the unknown distribution q(m) as the weight
function, and the known function, mkH (m), as the kernel. Thus for q= e−m in Eq. (2.9), the RHS
of Eq. (3.1a) results in the standard n-point Laguerre integration formula whose weights wi and
abscissas mi are available in tabulated form (Abramowitz & Stegun, 1972). The structure of the
RHS of Eq. (3.1a) remains valid for nonstandard weight functions; only the abscissas and weights
need to be determined (see below).

A similar application of the quadrature approximation to each of the terms on the right-hand side
of Eq. (2.11) gives

d
dt

〈mk〉qj ∼= k
n∑

i=1

mk
j; iH (mj; i)wj; i +

n∑
i=1

mk
i Hj(mi)wi; (3.1b)

where the subscript i labels the quadrature abscissas m and weights w (for i from 1 to n) and
subscript j labels the aerosol component. These are generally di>erent sets for each distribution,
which depend only on the lower-order moments of that distribution. The moments themselves are
readily expressed in terms of the abscissas and weights. For n-point quadrature:

〈mk〉q =
n∑

i=1

mk
i wi; (3.2a)

〈mk〉qj =
n∑

i=1

mk
j; iwj; i; (3.2b)

which are exact for k = 0 through 2n− 1.
Mathematical foundation for the QMOM lies in the fact that the abscissas and weights appearing

in the quadrature summations for moment evolution (Eqs. (3.1)) can be obtained even thought the
weight functions q(m; t) and qj(m; t) are themselves unknown.

All that is required is the availability of the lower-order moments of the weight functions (Press &
Teukolsky, 1990). This remarkable feature underlies the synergy between quadrature methods, which
permit integration of an arbitrary (but known) kernel function over an unknown aerosol distribution
(the weight function), and moment methods, which track the lower-order moments of the distribution.
Eqs. (3.2) show that the abscissas and weights are determined by the lower-order moments and this
fact leads to closure of Eqs. (3.1). Computing the moments in terms of the abscissas and weights
using Eqs. (3.2) is straightforward. A more challenging problem is to invert the ;rst 2n moments
for k =0 through 2n− 1 to obtain the unique set of n abscissas and n weights for which Eqs. (3.2)
are satis;ed. One such algorithm is provided by McGraw (1997). Presently, we use the compact and
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e5cient subroutine ORTHOG from Numerical Recipes (Press, Teukolsky, Vetterling, & Flannery,
1992) to do the inversion. Six-moments, or three-point quadrature points, are often su5cient for
estimating aerosol physical and optical properties (McGraw, 1997; McGraw, Huang, & Schwartz,
1995; Yue et al., 1997; Wright, 2000). Accordingly, in the examples given below, we will track six
moments, corresponding to three-point quadrature, for each distribution. Tracking the aerosol total
mass distribution moments requires using only the six moments of the q distribution from Eq. (2.7).
Tracking the total mass and any one selected component will require 12 moment equations. Tracking
all components of a six-component, internally mixed, aerosol would require 36 moment equations
coupled in groupings of six through the total mass distribution, etc.

Inspection of Eqs. (3.1) shows that the di>erential expressions for moment evolution are given
in terms of quadrature abscissas and weights. Except in the special analytic cases mentioned above,
for which an exact closed set of equations for moment evolution results, the most direct integration
approach requires moment inversion to obtain quadrature abscissas and weights from which moment
di>erentials can be computed via Eqs. (3.1), using these to update the moments, and so on. Thus in
this scheme multiple moment inversions are required. Nevertheless, this remains a valid and often
useful computational approach. Here we will introduce a powerful new method, based on JMT, for
obtaining closure in the QMOM while preserving the rigorous correspondence between the moments
and the quadrature abscissas and weights. The JMT closure has signi;cant advantages for describing
continuous evolution of an aerosol population in time. Speci;cally, the JMT eliminates the need for
repeated moment inversions. As most aerosol dynamic processes, including condensation, chemistry,
coagulation, and removal are continuous, the method is quite general and not limited to the particular
moment evolution described by Eqs. (3.1). An important exception to continuous aerosol dynamics
is the transport step in an Eulerian model, which necessarily involves transfer of ;nite amounts of all
species, including moments, from cell to cell at each transport time step. Another example is primary
emissions, which can introduce ;nite changes in aerosol moments over a model time step. At these
junctures, which involve ;nite changes in the moments during a model run, a moment inversion step
(for example, using (McGraw, 1997) or ORTHOG) to update the quadrature abscissas and weights
is required. Between such steps, during which continuous evolution of the aerosol occurs, the JMT
can be used. Besides making closure more explicit, the JMT is a powerful analytic tool that can
often be used to simplify propagation of the abscissas and weights. These features are illustrated
below.

3.1. Jacobian matrix transformation (JMT)

The JMT enables a closed set of di>erential equations to be obtained solely in terms of
the abscissas and weights. To illustrate the method, return to the general coordinate notation of
Eqs. (2.1)–(3) and consider a generic set of moments �̃ = {�0; �1; : : : ; �2n−1} and corresponding
abscissas {xi} and weights {wi} represented by the vector r̃ = {x1; w1; x2; w2; : : : ; xn; wn}. The latter
are connected with the moments through

�k ≡
∫

xkf(x) dx =
n∑

i=1

xki wi: (3.2c)
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From Eqs. (3.2c), we obtain the Jacobian matrix J de;ned as

J ≡




@�0

@x1

@�0

@w1
· · · @�0

@wn

@�1

@x1

@�1

@w1
· · · @�1

@wn

...

@�2n−1

@x1

@�2n−1

@w1
· · · @�2n−1

@wn




=




0 1 · · · 1

w1 x1 · · · xn

...

(2n− 1) x2n−2
1 w1 · · · x2n−1

n




: (3.3)

The elements of J, shown in the last array, are easily obtained from Eqs. (3.2c) and involve only the
abscissas and weights. Multiplication by the above matrix yields the di>erentials for the moments in
terms of di>erentials for the abscissas and weights: d�̃=J d̃r. This is a linear system that is readily
solved numerically for d̃r.

Explicit solution for d̃r requires the Jacobian matrix of the inverse transformation J−1 whose
derivatives are reciprocal to those of Eq. (3.3). Multiplication of the vector of moment di>erentials
d�̃ = {d�0; d�1; : : : ; d�2n−1} by J−1 yields the vector of di>erentials for the abscissas and weights
d̃r = {dx1; dw1; dx2; dw2; : : : ; dxn; dwn}:

d̃r = J−1 d�̃: (3.4)

Given that the elements of both factors on the right-hand side of Eq. (3.4), d�̃ from Eqs. (3.1)
and J−1, involve only abscissas and weights, Eq. (3.4) is a closed set of di>erential equations in
these quantities. Initial values for the abscissas and weights are obtained from the initial moments
on inversion. To carry out this procedure in general, the quadrature approximation, indicated by the
approximate equality for d�̃ in Eqs. (3.1a) and (3.1b) is required. However, for those special cases
that an exact closed-form set of equations can be obtained for the moments it follows, because the
moments are related to the abscissas and weights through Eq. (3.2c), that Eq. (3.4) is also exact.
This is demonstrated for analytic test cases in Section 5. Like the QMOM itself, the JMT provides
a more general framework for representing aerosol dynamics than does the conventional MOM,
reducing to the latter whenever the latter is exact.

For analytic results, as in the derivation of Eqs. (3.5) below, explicit expressions for the elements
of J−1 may be needed. These are signi;cantly more complicated than those of J but are readily
evaluated using a symbolic computation program such as Mathematica (Wolfram, 1999). These
elements are universal for 3-point quadrature as they depend only on the mathematical transformation
between abscissas and weights and moments and not on the functional form of d�̃. Thus the same
matrices, J and J−1, apply to any aerosol process including, for example, the representation of
multicomponent coagulating aerosols (Section 4). Note that if a pair of abscissas were to coincide,
or a weight vanish, the matrix of Eq. (3.3) would be singular and J−1 would not be de;ned. In
practice this case does not arise, but the issue can be forced by requiring that the distribution consist
of only one or two delta functions. Even in these very unnatural cases, nonsingularity is easily
restored by taking into account the true lower dimensionality of J and J−1. Closure equations for
the q and qj distributions are now given for 3-point quadrature.
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3.2. Closure equations for the total aerosol mass distribution q(m)

Substitution of Eq. (3.1a) into Eq. (3.4) and taking the time derivative of both sides
yields an especially simple result for evolution of the abscissas and weights under condensation
growth:

d
dt




m1

w1

...

m3

w3




= J−1{mi;wi}




H (m1)w1 + · · ·+ H (m3)w3

2m1H (m1)w1 + · · ·+ 2m3H (m3)w3

...

5m4
1H (m1)w1 + · · ·+ 5m4

3H (m3)w3

6m5
1H (m1)w1 + · · ·+ 6m5

3H (m3)w3




=




m1H (m1)

w1H (m1)

...

m3H (m3)

w3H (m3)




; (3.5a)

where the elements of J−1 are the same as above, but here in terms of the abscissas and weights
{mi;wi} of the q distribution. Although the middle expression is quite complicated it reduces, aided
by the algebraic capabilities of Mathematica, to the extremely simple result shown on the right.
Eqs. (3.5a) are the natural evolution equations for a decoupled set of monodisperse distributions of
particles of mass mi and can be rewritten as

dmi

dt
= miH (mi);

dwi

dt
= wiH (mi): (3.5b)

For continuous evolution of single-component aerosols under condensation and evaporation,
Eqs. (3.5b) can be used directly and there is no need for moment inversion to update the abscissas
and weights. It can be shown that the ;rst of Eqs. (3.5b), giving rise to a pure evolution of the abscis-
sas (dmi=dt), results from the leading term, proportional to k on expansion of the right-hand side of
Eq. (3.1a). The second of Eqs. (3.5b), giving rise to a pure propagation of the weights (dwi=dt),
results from the remaining term proportional to unity.

3.3. Closure equations for the aerosol component mass distribution qj(m)

Evolution of the abscissas and weights for the j component distributions from Eqs. (3.1b) and
(3.2b) is slightly more complicated. One reason is that without knowledge of the q distribution at the
quadrature points of the qj distribution, and vice versa, it is generally not possible to approximate
both integrals in Eq. (2.11) using the same set of abscissas and still have exact representation
of the lower-order moments of each distribution. For this we must utilize all 2n quadrature points
(n for the component j distribution and n for the total mass distribution) that appear on the right-hand
side of Eqs. (3.1b). Nevertheless, evolution of the abscissas and weights of the qj distribution can
still be carried out rigorously by the JMT method. (Of course if the composition mj=m in Eq. (2.11)
is independent of m, the distributions are proportional and the problem simpli;es considerably. Here
we will examine the more general case.)
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We begin by splitting the moment time derivative into two parts according to d�̃=dt = d1�̃=dt +
d2�̃=dt where d1�̃=dt and d2�̃=dt are, respectively, the ;rst and second terms on the right-hand side
of Eq. (3.1b). These give rise to the corresponding increments d1̃r=dt and d2̃r=dt in the abscissas
and weights. The ;rst term, which contains abscissas and weights from only the qj distribution is
most easy to evaluate and reduces to a simple evolution of the abscissas with no change in the
weights:

d1
dt




mj;1

wj;1

mj;2

wj;2

mj;3

wj;3




= J−1{mj; i;wj; i} d1
dt

�̃ =




mj;1H (mj;1)

0

mj;2H (mj;2)

0

mj;3H (mj;3)

0




: (3.6a)

The elements of J−1 have the same functional form as previously, but are now in terms of
the abscissas mj; i and weights wj; i of the qj distribution. The contribution from the d2̃r=dt in-
volves abscissas and weights from both the q and qj distributions and is a more complicated
expression

d2
dt




mj;1

wj;1

mj;2

wj;2

mj;3

wj;3




= J−1{mj; i;wj; i}




Hj(m1)w1 + · · ·+ Hj(m3)w3

m1Hj(m1)w1 + · · ·+ m3Hj(m3)w3

...

m4
1Hj(m1)w1 + · · ·+ m4

3Hj(m3)w3

m5
1Hj(m1)w1 + · · ·+ m5

3Hj(m3)w3




: (3.6b)

Although we have not found a simpler result for the right-hand side of Eq. (3.6b), the latter is
readily evaluated given J−1. The vector on the right-hand side of Eq. (3.6b) contains the abscissas
and weights of the q distribution and the matrix-vector product, therefore, contains contributions
from both distributions as expected. The total di>erential change for the abscissas and weights of
the component distribution is obtained by summing Eqs. (3.6a) and (3.6b). The result, together
with the equation for evolving the abscissas and weights of the q distribution (Eq. (3.5)), constitute
a closed set of 12 equations for evolution of the abscissas and weights of both (total mass and
component j) distributions. Sets of equations identical to Eqs. (3.6) are encountered for each of the
aerosol component distributions. Although more complicated than using a single set of abscissas,
this procedure insures optimal representation of the moments for each distribution.

4. Coagulation by the QMOM

Coagulation rates are frequently expressed in terms of particle volume, however, in this
section we will continue the notation of Sections 2 and 3 and express distributions in terms of
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particle mass. Conversion to volume or radial moments is straightforward for spherical particles of
known density. Evolution of the kth moment under coagulation can be written as (Barrett & Webb,
1998)

(
d
dt
〈mk〉f

)
coag

=
1
2

∫ ∞

0
du

∫ ∞

0
dv[(u+ v)k − uk − vk]K(u; v)f(u; t)f(v; t)

∼= 1
2

n∑
i=1

n∑
j=1

[(mf;i + mf;j)k − mk
f; i − mk

f;j]K(mf;i; mf;j)wf;iwf;j; (4.1)

where the coordinates u and v refer to particle mass and the subscript f labels the abscissas and
weights of the f distribution. The integrand in Eq. (4.1) derives from considering the coagulation
of a pair of particles of masses u and v to form a particle of total mass u + v and the e>ect that
each such event has on the moment. K(u; v) is the collision frequency function, which depends on
the volumes of the colliding particles and on such properties of the system as temperature, pressure,
and viscosity. The factor of 1

2 corrects for double counting. The last equality gives the approximate
moment evolution in the QMOM. As with condensation, closure is obtained from the connection
between moments and quadrature abscissas and weights.

This result will now be extended to the case of coagulation for an internally mixed multicomponent
aerosol to obtain the moment evolution for the q(m) and qj(m) distributions. A similar result to
Eq. (4.1) is readily obtained for evolution of the moments of the aerosol total mass distribution,
q(m). From Eqs. (2.9) and (4.1) we obtain

(
d
dt
〈mk〉q

)
coag

=
1
2

∫ ∞

0
du

∫ ∞

0
dv[(u+ v)k+1 − uk+1 − vk+1](uv)−1K(u; v)q(u; t)q(v; t)

∼= 1
2

n∑
i=1

n∑
j=1

[(mi + mj)k+1 − mk+1
i − mk+1

j ](mimj)−1K(mi; mj)wiwj; (4.2a)

where the double summations are over the abscissas and weights for the q(m) distribution. The
evolution of qj(m) due to coagulation is given by Pilinis (1990)

@qj(m; t)
@t

=
1
2

∫ m

0
K(m′; m− m′)qj(m′; t)

q(m− m′; t)
m− m′ dm′

−qj(m; t)
∫ ∞

0
K(m;m′)

q(m′; t)
m′ dm′:

The ;rst term on the right-hand side describes the production of particles of mass m through coag-
ulation of particles of masses m′ and m−m′, and the second term describes the loss of particles of
mass m as these coagulate with particles of mass m′. Using this result to di>erentiate the integrand
of Eq. (2.11) and carrying out the integration, we obtain the following rate of change for the kth
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moment:(
d
dt
〈mk〉qj

)
coag

=
1
2

∫ ∞

0
du

∫ ∞

0
dv[(u+ v)k − uk]v−1K(u; v)qj(u; t)q(v; t)

+
1
2

∫ ∞

0
du

∫ ∞

0
dv[(u+ v)k − vk]u−1K(u; v)qj(v; t)q(u; t)

∼=
n∑

i=1

n∑
l=1

[(mj; i + ml)k − mk
j; i](ml)−1K(mj; i; ml)wj; iwl; (4.2b)

where i and l are summation indices and j, as in Eqs. (3.2), labels the aerosol component. In the
;rst integral u = m′ and v = m − m′; in the second u = m′ and v = m. The last equality follows
from the permutation symmetry K(u; v) = K(v; u). As in Eq. (3.1b), the abscissas and weights for
both distributions, q(m) and qj(m), appear on the right-hand side of Eq. (4.2b). Summation of the
equalities of Eq. (4.2b) for di>erent species index j gives Eq. (4.2a).

Eqs. (4.2) complete the QMOM formulation for moment evolution under coagulation of internal
mixtures described by the q(m) and qj(m) distributions. Together with Eqs. (3.2) for the moments,
a closed set of equations for the lower-order moments is obtained as in the case of condensa-
tion. Closure equations, which do not require multiple moment inversions to update the abscissas
and weights, can also be obtained for coagulation using the JMT of Section 3. In the notation of
Eq. (3.4), with subscript labels added to indicate the distribution, we obtain(

d̃rq
dt

)
coag

= J−1{mi;wi}
(
d�̃q

dt

)
coag

; (4.3a)

(
d̃rqj
dt

)
coag

= J−1{mj; i;wj; i}
(
d�̃qj

dt

)
coag

; (4.3b)

where the kth elements of the moment vector derivatives are given by Eqs. (4.2). (Note the
abbreviated notation whereby the kth component of �̃q equals 〈mk〉q, etc.) The J−1 matrices of
Eqs. (4.3a) and (4.3b) are identical to those of Eqs. (3.5a) and (3.6), respectively. A similar equation
to Eq. (4.3a) results for evolution of the abscissas and weights and moments of the f distribution.
In this case J−1 has the same functional form as above, but its arguments are given in terms of
the abscissas and weights of the number distribution. Eqs. (4.3) describe continuous evolution of
abscissas and weights under coagulation in much the same way that Eqs. (3.5) and (3.6) do under
condensation. The di>erentials from Eqs. (3.5a) and (4.3a) for q(m) [from Eqs. (3.6) and (4.3b) for
qj(m)] contribute additively to the aerosol general dynamic equation describing continuous evolution
under simultaneous condensation and coagulation. These results are illustrated in the calculations
below.

5. Calculations

Analytic solutions for q(m; t) under conditions of constant coagulation kernel and constant growth
rates are given by Pilinis (1990). These conditions, with coagulation and condensation occurring
separately or together, result in closed-form equations for moment evolution and both the MOM
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and the QMOM are exact. In addition to evolution under a constant kernel, the sum and product
coagulation kernels, K(u; v)=u+v and K(u; v)=uv, are also handled exactly by moment methods for
the positive integral moments (Barrett & Webb, 1998). To benchmark the QMOM for a nonanalytic
case, we use the coagulation kernel for Brownian coagulation in the continuum (large particle)
regime (Friedlander & Wang, 1966)

K(u; v) = KBL(u1=3 + v1=3)(u−1=3 + v−1=3); (5.1)

where u and v are particle volumes. The prefactor KBL depends on temperature and viscosity and
will be assumed constant in the calculations to follow.

For growth by condensation, a widely used interpolation formula, which provides a nonanalytic
test case for the model (Barrett & Clement, 1988; McGraw, Nemesure, & Schwartz, 1998) is

H (m) = A
m−1=3

aM + m1=3 : (5.2)

The prefactor, A, is proportional to the di>erence in number density of condensable molecules in
the vapor at large distance from the particle and the number density at the particle surface. This
di>erence is positive for condensation and negative for evaporation. The parameter aM is dependent
on the mass accommodation coe5cient and mean free path. Without loss of generality, we can
express mass in units of a3M , and time in units of a2M=A, to obtain

H̃ (m̃) =
m̃−1=3

1 + m̃1=3 ; (5.3)

where the tilde indicates reduced units (m̃=m=a3M ; t̃cond =At=a2M ). For coagulation, it is conventional
to express the results in terms of reduce time t̃coag =KBLN0t where N0 is the initial particle number
density, and reduced particle number N=N0.

For the general case that both condensation and coagulation are occurring, because only one
reduced time scale can be chosen, we express time in terms of t̃cond using the time constant ratio
� = a2MKBLN0=A to determine the relative rates of the two processes. Thus for ��1 condensation
occurs more quickly than coagulation, and vice versa. In the simultaneous process calculations below,
we choose � = 1.

5.1. Benchmark box-model calculations: Discrete scheme for solving the aerosol general dynamic
equation

To evaluate the QMOM for multicomponent aerosols, we computed benchmark results using a dis-
crete representation of the particle size distribution. The discrete scheme employed here numerically
integrates the appropriate terms of the aerosol general dynamic equation for growth by coagulation
and condensation using a ;xed logarithmic mass scale. The scheme is optimized for ease of program-
ming and is not designed to minimize the number of grid points or computation speed. In practice,
the number of grid points is increased until convergence is obtained. As evolution processes give
rise to particle masses that do not correspond to any of the ;xed grid values, these are apportioned
over the neighboring grid points.

As an illustration, suppose that there are N coagulation events between particles of masses mi

and mj (grid points i and j) during an integration time step. This would yield N particles of mass
mk = mi + mj, with mnlo6mk ¡mnhi where mnlo and mnhi are the masses of the two neighboring
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grid points nlo and nhi, respectively. The mass contained in the N particles of mass mk is appor-
tioned between grid points nlo and nhi such that the number of new particles N and the total mass
Nmk are both conserved during the apportionment. This is done by solving the pair of equations
N =Nnlo+Nnhi and Nmk =Nnlomnlo+Nnhimnhi for Nnlo and Nnhi, the increments added to the numbers
of particles at grid points nlo and nhi, respectively. For an initial distribution with size-independent
composition, coagulation alone does not change particle composition and the moments of each com-
ponent are simply related to the moments of the total mass distribution. For the general case where
particle composition is size-dependent, the mass per particle for each component must be updated
by considering at each coagulation event the mass of each component acquired by the relevant grid
points, as well as the changes in particle number for those points. Comparison with the ;nite-element
method (FEM) results of Barrett and Webb (1998) shows good agreement taking into account the
degree of convergence of the FEM results suggested by their tabulated values.

During condensation, each of the Ni particles of mass mi acquires mass dmi during the time step
with mi6mi + dmi ¡mi+1. The time step is kept small enough to insure that the latter inequality
is satis;ed. As in the treatment of coagulation described above, the total mass contained in the Ni

particles of mass mi +dmi is apportioned between neighboring grid points i and i+1 such that total
mass and number are conserved. The composition of each grid point is updated by computing the
mass of each component that condenses on a particle of total mass mi during a time step for each
of the grid points. For growth by simultaneous coagulation and condensation, operator splitting is
used. The mass range of the grid is extended far enough to insure that the distribution amplitude is
negligible at the high-mass end of the spectrum.

5.2. Variable transformation in the QMOM

For developing the evolution equations for the abscissas and weights in Sections 3 and 4, it
was convenient to work in terms of the ;rst six positive integral mass moments q(m): mk for k =
0–5. In the calculations presented below, we use the fractional moments (〈mk=3〉 for k = 0–5). For
an aerosol of uniform particle density, these mass-fractional moments are proportional to the radial
moments. This choice is motivated by the fact that the members of this fractional moment sequence
are of greater physical relevance than higher-order members of the corresponding integral moment
sequence (Tandon & Rosner, 1999). Furthermore, attempts to accurately represent the higher integral
moments, for example, the ;fth mass moment of q(m), magnify the importance of the tail of the
distribution, which is heavily weighted, and greatly increases the di5culty of carrying out numer-
ical calculations with su5cient accuracy and resolution to provide a good benchmark test for the
QMOM.

A very useful feature of the QMOM is that coordinate transformations can be implemented simply
by modifying the initial abscissas and weights and then evolving these in time using the same
transformations (for example, the same Jacobian and the same d�̃) as used in evolution of the integral
moments. This is seen for the fractional k=3 mass moments as follows. Let the JMT evolution of
the abscissas and weights, as determined initially from the t = 0 integral moments, be represented
schematically as follows:

{mi(0); wi(0)} →
JMT

{mi(t); wi(t)}: (5.4)
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Next, consider transformation to fractional k=3 mass moments and let "=m1=3. The fractional mass
moments are

〈mk=3〉q ≡
∫ ∞

0
mk=3q(m) dm=

∫ ∞

0
"kq"(") d" ∼=

n∑
i=1

"k
i wi; (5.5)

where the middle equality uses the transformation rule, q"(") d"= q(m) dm, underlying the mapping
between coordinate systems. The fractional moment sequence 〈mk=3〉 at t = 0 (for example, for k =
0–5), when processed through ORTHOG, yields the corresponding initial set of abscissas and weights
{"i(0); wi(0)}. One can now evolve {"i; wi} using the same JMT as previously used to evolve the
integral moments. This requires ;rst cubing the abscissas to obtain units of mass and then evolving
the cubed abscissas and weights as in Eq. (5.4)

{"3i (0); wi(0)} →
JMT

{"3i (t); wi(t)}: (5.6)

The fractional mass moments at time t are obtained from the right-hand side of Eq. (5.6)

〈mk=3〉q ∼=
n∑

i=1

("3i )
k=3wi: (5.7)

Other variable transformations are readily accommodated by this approach using similar transforma-
tions for the abscissas and weights.

5.3. Comparison between the benchmark model calculations and the QMOM

The initial number distribution is taken to be log-normal in the calculations that follow:

f(m; 0) = N0(ms
√
2$)−1 exp{−[ln (m= Vm)]2=(2s2)}: (5.8)

N0 is the particle number density, m is particle mass, Vm is the geometric mean mass, and s is the
logarithm of the geometric standard deviation. (The m in Eq. (5.8) is the mass in reduced units, m̃,
(cf. Eq. (5.3)) however, to avoid a separate notation we simply set aM = 1 and m= m̃.) The initial
mass moments of q(m; 0) = mf(m; 0) are

�k(0) = exp{(k + 1) Vm+ [(k + 1)s]2=2} (5.9)

after normalization by the initial particle number, N0. In the calculations that follow we set s2 =
Log(4=3), and Vm=

√
3=2. For the species distributions we set qj(m; 0)= q(m; 0)=3 for j= a; b; c and

for the individual species growth laws, H̃ a(m) = 0; H̃ b(m) = H̃ (m)=3, and H̃ c(m) = 2H̃ (m)=3. The
tilde signi;es reduced time units. Finally, we assume unit densities and report results in terms of
particle volume, v.

Fig. 1, shows convergence of the benchmark model calculations for the full distribution func-
tion and for the largest fractional moment (�5=3) under continuum Brownian coagulation alone. The
lower panel gives percent error, as compared with the QMOM, vs. reduced time [%e=100(QMOM−
Grid)=Grid] where ‘QMOM’ and ‘Grid’ are the moments from the QMOM and numerical calcula-
tions, respectively. We note that the errors always decrease as the number of grid points increases.
Because the QMOM result is ;xed, this is a measure of the convergence of the discrete grid results.
These results show that high resolution grid is necessary for accurate benchmarking of the moment
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Fig. 1. Convergence of the total volume distribution q(v) = vf(v) from the discrete representation of the distribution.
Results are for evolution under continuum Brownian coagulation alone. Results from discrete representations employing
100, 200, 500, 1000, 2000, and 3000 grid points are shown. The upper panel shows the convergence of the initially
normalized distribution itself, which is shown to be well represented even with 100 grid points. The lower panel shows
the percent error di>erences between the discrete representation and the grid-independent QMOM result for the largest
moment (�5=3). Results are shown as a function of the number of grid points used in the discrete representation. Time is
in reduced units, t̃coag, de;ned in the text.

Fig. 2. Moment evolution under simultaneous condensation and coagulation from the discrete representation (3000 grid
points) and from the QMOM (dots). Results are shown for the total volume distribution q(v) (solid line), and the species
distributions qa(v) (bottom curve), qb(v) (second curve from bottom), and qc(v) (third curve from bottom). QMOM results
with operator splitting are also shown for the total volume distribution q(v) (diamonds) to access the inJuence of operator
splitting used to obtain the benchmark results from the discrete representation. Time is in reduced units, t̃coag, de;ned in
the text.

calculations (especially for the higher-order moments). This is a reJection of the high accuracy of
the QMOM, which requires even higher accuracy of any benchmark calculation. The distribution
function itself appears well converged using just 100 grid points, while the error in the highest mo-
ment, �5=3, which di>ers most from the converged result, is about 1%. Note the logarithmic scale,
used in the upper panel, shows signi;cant evolution of f(v) from the initial distribution to the dis-
tribution at reduced time t̃=10, suggesting a reasonable test case for the QMOM. Coordinates have
been chosen so as to preserve area under the conservation of total particle volume that takes place
during coagulation alone.

Fig. 2 shows moment evolution under simultaneous condensation and coagulation (for � = 1)
from the discrete representation (3000 grid points) and from the QMOM (dots). The QMOM results
were obtained without operator splitting (dots) and show much larger departure from the discrete
calculations than was found for either of the processes, coagulation and condensation, separately.
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Table 1
Evolution of fractional 1=3 moments for the analytic test case of simultaneous condensation and coagulation with H (m)=1
and K(u; v) = 1

k �k(t = 0) �k(t = 10)QMOM �k(t = 10)exact

0 1 22026.5 22026.5
1=3 1.19064 1.34451E6 1.33585E6
2=3 1.50458 8.63004E7 8.59850E7
1 2 5.82204E9 5.82198E9
4=3 2.77816 4.11311E11 4.11936E11
5=3 4.0122 3.027E13 3.03031E13

This discrepancy is attributed to degradation by operator splitting of the accuracy of the discrete
calculations. To access the inJuence of operator splitting, calculations were carried out for q(v) by
modifying the QMOM so as to use the same operator splitting method as in the discrete case. The
results (open diamonds) never exceed a percent error di>erence of 0.5% from the discrete benchmark
calculations. Thus the original QMOM results without operator splitting are probably accurate to
within the 0.5% error range expected from our analysis of the coagulation and condensation processes
separately.

In addition to benchmarking against computationally intensive simulations using high-resolution
grids, there are several analytic cases and cases of known asymptotic behavior that provide additional
tests on the accuracy of the QMOM.

5.4. Analytic and asymptotic results by the QMOM

For the analytic test cases considered by Pilinis either H (m) = 1 or K(u; v) = 1, or both (Pilinis,
1990). Under these conditions, moment methods, including the QMOM, are exact for the positive
integral mass moments. This property follows from the fact that these simpli;ed growth laws yield
closed sets of equations for the integral moments (see previous discussion; Barrett & Webb, 1998).
Analytic cases for which the full distributions are known exactly as a function of time provide
a good benchmark for the accuracy of the QMOM integration methods described in Section 3.
Table 1 shows results for evolution of the fractional 1=3 moments under simultaneous condensation
and coagulation (for H (m) = 1 and K(u; v) = 1) and comparison with analytic moments obtained
from the full distribution (since the latter is known analytically, all moments including the integral
and the fractional 1=3 moments are also known). Even with substantial evolution from the initial
conditions, excellent agreement is found for both the integral moments (�0 and �1) and the fractional
moments. In the former case, agreement is expected and these results demonstrate that errors due to
numerical integration are exceedingly small. Excellent agreement for the fractional moments is an
indicator of the accuracy that can be expected from 3-point quadrature integration even for problems
for which the method is not exact.

The accuracy of the QMOM for long-time evolution under coagulation can be benchmarked by
comparison with asymptotic results (Friedlander & Wang, 1966). The asymptotic distribution is the
similarity, or self-preserving, from that results for the continuous distribution function based on the
property that the fraction of particles in a given size range is a function only of the dimensionless
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Table 2
Extension of the QMOM to the self-preserving limit

k !k(QMOM) !k(exact) !k(QMOM) !k(literature values)
constant kernel constant kernel Brownian kernel Brownian kernel

='(k + 1) (continuum regime) (continuum regime)

0 1 1 1 1(a)
1 1 1 1 1(a)
2 1.99999 2 2.01022 2.014(a)
3 5.99992 6 6.05027 6.100(a)
4 23.9995 24 24.3116 24.77(a)
5 119.997 120 122.317 125.9(a)

( 0.52 0.547 0.52 0.53(b)

Results for constant and continuum-regime Brownian coagulation kernels. The table gives reduced moments !k from
Eq. (5.12) and ( = !1=3!−1=3=(1 + !1=3!−1=3) (Wang, 1966; Friedlander & Wang, 1966).

volume " = v= Vv, where Vv is the average particle volume. In terms of the volume moments of the
number distribution, f(v), Vv= �1=�0. In general, both the total particle volume V = �1 and number
density N∞ = �0 are functions of time. Here we consider the simplest case for which no material
is added or lost (constant V ) and the number density decreases as coagulation takes place. In this
notation the relation:

f(v) dv
N∞

=  
(v
Vv

)
d
(v
Vv

)
(5.10)

de;nes the reduced distribution function  ("). At long times, as  (") reaches its asymptotic self-
preserving form, the moments of  ("):

!k ≡
∫ ∞

0
"k (") d" (5.11)

will also approach asymptotic values. In terms of the moments of f(v), the reduced moments are

!k =
(
�k

�0

)(
�0

�1

)k

: (5.12)

To compare our calculations with asymptotic results we evolve the moments, �k(t), of f(v; t) out
to long time using the QMOM. From these are determined the nondimensional moments, !k(t) of the
reduced distribution using Eq. (5.12). Two di>erent coagulation kernels, the analytic constant kernel
and the continuum Brownian kernel were used to evolve the moments. Convergence of the reduced
moments to their asymptotic values is shown in Fig. 3 for coagulation via the continuum Brownian
kernel. The integration time was taken out to t = 105 although reliable convergence is obtained in
considerably less time (Fig. 3). The logarithmic time scale is used to emphasize the approach to
asymptotic behavior. Calculations were performed on a Sun Spark Enterprise and required only a
few seconds of computer time using the JMT.

Asymptotic values of the reduced moments (here taken to be the values at t = 105) are given in
Table 2. For the constant kernel, the analytic distributions and thus the moments are known exactly
and the !k are known to approach the factorial values !k = '(k + 1) (Wang, 1966). The QMOM
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Fig. 3. Evolution of the dimensionless reduced moments !k for k = 2–5 for continuum Brownian coagulation alone (the
values of !0 and !1 are by de;nition unity). Note the logarithmic time scale used to emphasize the approach to asymptotic
behavior at comparatively short times.

results are seen to be in excellent agreement with the analytic values as expected in the constant
kernel case for which, apart from numerical roundo>, the QMOM is exact. The agreement for (,
which is de;ned in terms of the fractional 1=3 volume moments (see caption) is good only to about
5%, reJective of the fact that the QMOM is not exact for fractional moments. QMOM results for
the continuum Brownian kernel are also shown and seen to be in excellent agreement with literature
values for the integral volume moments and for ( (exact results are not available for this case).
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6. Summary and discussion

Moment methods, and in particular the QMOM, provide a highly accurate tool for tracking the
moments of a particle size distribution. In this paper, these methods have been extended to internally
mixed particle populations and tested through simulations of particle evolution through condensation
and coagulation growth. The percent errors, which were the greatest for the highest-order moment,
never exceeded 0.05% for coagulation, 0.4% for condensation, and an estimated 0.5% for the com-
bined processes without operator splitting. The accuracy for coagulation is especially remarkable and
may be due to constraints on how the moments evolve under the QMOM. For example, unless two
colliding particles are very di>erent in size, the Brownian kernel is nearly constant—and moment
evolution for a constant kernel by the QMOM is exact (Section 5). Self-preserving constraints on
the distribution function may also serve to prevent unbounded accumulation of error as the moments
of a coagulating aerosol are evolved for long times using the QMOM. The QMOM was found to
give exact results for the asymptotic moments in the constant kernel case and excellent agreement
with literature values for the asymptotic moments derived from self-preserving size distributions in
the continuum Brownian case. This paper also introduced the JMT and demonstrated its use as an
alternate closure method for the QMOM.

Previous applications of moment methods have generally been limited to univariate distributions
in which a single coordinate, usually particle radius or mass, is used to represent particle size. The
internal mixture assumption employed in the present study also results in a one-dimensional aerosol
representation with total particle mass as coordinate. However, with internal mixtures, multiple dis-
tributions, one for each component species, need to be tracked and these are coupled through the
total particle mass. The methods described in this paper provide a solution to the representation of
internal mixtures in aerosol models by moment methods.

The development of multicomponent thermodynamic models (for example, Clegg, Brimblecombe,
& Wexler, 1998; Capaldo, Pilinis, & Pandis, 2000), has enabled improved prediction of aerosol
evaporation rates and gas–particle exchange. The resulting growth laws have more general compo-
sition dependence than those considered here, for example, species growth rates of the multivariate
form, Hj(m1; m2; : : :), in the notation of Section 2. The great e5ciency of moment methods makes
these ideal candidates for extension to multivariate problems. An important step in that direction
was recently taken through the development of a bivariate extension of the QMOM for modeling
simultaneous coagulation and sintering of nonspherical particle populations (Wright, McGraw, &
Rosner, 2001). Most recently, a fully multivariate version of the QMOM has been developed using
a dynamic extension of principal component analysis to provide the mapping between mixed-moment
elements of the multivariate covariance matrix and the quadrature abcissas and weights. Results from
these studies will be reported in future work (Yoon & McGraw, 2002).
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Appendix A. A generalized derivation of Eqs. (2.3) using the Reynold’s transport theorem

Consider an integral over the particle number distribution function of the form:

I =
∫∫∫

h(̃x)f(̃x; t) dV (A.1)

where f(̃x; t) is the (here multivariate) distribution function, with x̃ ≡ (x1; x2; : : : ; xk), and h(̃x) is
a kernel that depends only on x̃. Because f(̃x; t) is conserved under growth by condensation, and
assuming that there are no sinks or sources of particles within the integration volume, it satis;es the
continuity equation:

df
dt

+ f(∇ · ṽ) = @f
@t

+∇ · (fṽ) = 0; (A.2)

where ṽ = �(̃x) = dx̃=dt is a generalization of the univariate growth rate, �(x), of Section 2 to the
multivariate case. @=@t denotes rate of change at constant x̃ and d=dt is the rate of change in the
frame of the particle, analogous to the ‘material derivative’ (Aris, 1962) used in the case of Juid
Jow.

Under these conditions, we can adapt the methods described by Aris (1962) to obtain the temporal
evolution of A1:

dI
dt

=
d
dt

∫∫∫
hf dV =

∫∫∫ {
d
dt
(hf) + hf(∇ · ṽ)

}
dV

=
∫∫∫ {

f
dh
dt

+ h
(
df
dt

+ f∇ · ṽ
)}

dV =
∫∫∫

f
dh
dt

dV;

(A.3)

where the second equality is the Reynold’s transport theorem (Aris, 1962) and the fourth equality
follows from Eq. (A.2). Note here that the volume of integration is assumed large enough to contain
all of the particles independent of time. Eq. (A.3) is the more general result mentioned in Section
2. It reduces to Eq. (2.3) for the univariate case h(x) = xk . Eqs. (2.10) and (2.11) can also be
derived from Eq. (A.3). For example, for the moments of Eq. (2.11) we have, using the notation of
Section 2:

〈mk〉qj =
∫

mkqj(m) dm=
∫

mkmjf(m) dm (A.4)

and from Eq. (A.3)
d
dt

〈mk〉qj =
∫

f(m)
d
dt
(mkmj) dm: (A.5)

Eq. (2.11) follows immediately on taking the derivative that appears in integral on the right-hand
side of Eq. (A.5).
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